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By Th.

TURBULEIJT ~RIC!J!ION1 “

von K&rm&n

The theoretical treatment of surface friction of liquids
or gases at E eolld wall encounter eerlous diffiaultieo 88
SOOP aE the processes are no longer defined by the viscosity
of the fluid alone, but aleo Involve the forces of Inertia
with the probable exception of the flow phenomena In camll-
laries and the probleme of lubricant friction - as Se the
caee in nearly all pr%ctical problem~, All the same, two
substantial advances have been achieved in this domain with-
in the laet decadee; namely, by Prandtlts ‘boundary layer
theory” and Blaeius’ confirmation of the prevlouely sus-
pected nature of the friction loss In smooth pipes.

Unfortunately, the results of Prandtlcs theory have
remained confined to a comparatively narrow range, first
for the more obvious reqson, that the paper work involved
for specific cases Is enormoue, but then also because Its
physical range of validlty is, like the theory of pure
friction flow in pipes, restricted to narrow limits. Just
as the pure friction flow, the so-called laminar flow in
plpee, Ie replaced by a “turbulent flow” at higher velocities,
so the laminar boundary layer Is replaced by a “turbulent”
boundary layer.

The preeent report deals, firet with the theory of the
lamlnar friction flow, where the basfc concepts of Prandtl’s
boundary layer theory are represented from mathematical and
physical points of view, and a method is indicated by means
of which even more complicated casee can be treated with
simple mathematical means, at leaet approximately, An
attempt is aleo made to secure a basis for the computation
of the turbulent friction by means of formulas through which

“l”~ber laminare and turbulent Retbung.” Z,.f,a.M.M., ,
vol. 1, No. 4! Aug. 1921, pp. 233-2S2.

——.
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the empirical lave of the turbulent pipe reeietanee can be
.. appl-ied to other problems on friction drag... . .

MATHEMATICAL IMPORT OF THE BOUNDARY LAYER THEORY1

The @roblem Ie restricted to tw~dimeneional flowe; the
axie y + O ie choeen as fixed boundary to which the fluid
adheree .

The differential equatlon~ of two-dlmenelonal flow with
friction can, by introduction of the etream function ~ by
means of the formula

(u and v velocity component in x- and y-direction) “
and elimination of the preeeure, be expreesed by the elngle
equation

an + aa
where A defioten the operation A = — =~

iYx= -=’ v

kinematic viecoefty (w = viecoeity, P = dzzaity of ~luid ~.
The boundary layer theory refere to flow phenomena for which
at same dletance from the wall the friction ehall exert no
perceptible effect on the velocity field, eo that for great
valuee of y the etream function changee Into an aseumedly
known potential function $0 (x, y, t). At the wall itself

both velocity Component u and v are to disappear. 1P
order to meet both conditions, flret put

* =*~- Y“(a*)y=@+-$%-1‘s ‘) ‘2)
It ie clear that for small values of y the flret two

terme cancel out, leaving only the etream function K“

(the stream function of the boundary layer flow). This Is

‘A net of reference on bound~ry layer theory Ie given
In reference 1.

-...- .— .——--. —.. .— ___ ._ _ -- .. —-.-—
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aw =aqtl=o
then ao defined that at the wall

Txm
On the

.. ..... --- ....
other hand, when v represents a ●m”a”llqtia-nti-ty,‘ ~ be-

%/7
come8 very great $or all values of y @iffer ing appreciably
from zero; hence, to comply with the first condltlon - tran-
sition to potential flow - tt :$oaufficient to determine *Z,

aq~
In such a way that fi— ay =(–)

for
a7y=0

q. JL 81-.

P

Thus it is apparent that within the boundary layer (T =
finite) the firet two terme, outoide the boundary layer (q
very great) the last two terms annul each other. (Strictly
taken, the u component of the boundary layer becomee the
u— velocity of the potential flow; for the v component
the boundary layer flow gtvee a quantity of the order of magnitude

F * which is not contained in the potential flow. )

Introduce formula (2) In eouqtlon (l), arrange In powers

of r v and retain only-the highest terms with —. Then

&
the introduction of ~ = ~ arn variable instead of y, the

a+o ‘laqo
expansion of —aF and of —ax according to the formulao

and laetly,

affords

avl
coneiderlng that AA*O = O,

()x-
= o,

y=o

and, after one Integration:

,. —. -
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,. w.=.., Jw;’—s-~,

‘r ‘ith “aq the variable Y = ~~ being
..

Introduced again,

au au au aau
= f (x, t)

K+uz+uyvw
(4)

in agreement with the Prandtl equationta.

The function f (x, t) is determined by the condition for
?)*o

Y=o= Since u must change to U. = ()&-y = 0’
there 18

obtained

auo ho
= f (x, t)

K + ‘o-x_

The frictionlese potential flow follows Bernoullt’s
equation differentiated along the boundary as streamline
(P. = pressure along the wall)

auo auf) I apo— + uo— =--—
at ax ~ ax

hence

(4a)

(4b)

(4C)

The significance of (4) and (4b) obviously is “that”the
assumedly known pressure distribution p. along the wall

which arises from the potential flow is to a certain extent
regarded ae Impreseed field (of force) for the boundary layer
flow; the preseure differences perpendicular to.the wall vith-
in the boundary layer being dieregnrded. It Ie this very

b essential hypotbes$s in ?randtlts theory that leads to the
reduction of the number of equations and the arrangement of
the entire problem.
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To bring out the physical sense of the boundary layer
theory the evidence oontalned in the foregoing equations Is
formulated as follows:

(a) A boundary layer thickness 8 (EO a function”of x)
Is to exist euch that for y2?& there no perceptible de-
viation occurs in the flow pattern relat~ve to the potential
flow; eepeclally the x-component u of the velocity cm be
put equal to the wall “velocity of the potential flow U.
for y= 5 (x).

(b) within the boundary layer itself the preeeure le
only dependent on x and equal to the preesure that corre-
sponds to the potential flow along the wall.

By virtue of the two assumptions (a) and (b) the momen-
tum theorem in the x direction can be applied to a fluid
volume bounded by the wall, a short piece of the line
Y = 6 (x) and two crose sectione perpendicular to the wall
at x and x + dx (fig. 1.) The Increaee of momentum IS
equated to the resultant of the outside forcem, which Involve
the preeeure difference, and the friction R at tjhe wall ae
outeide forcee. Since for y = 8 the flow changee into
frictionleee potential flow, the friction at the traneltlonal
area between the boundary layer and the outer field can be
ignored.

Hence

K J‘pudy is the time rate of change of the momentum con-
6
n=

taln”ed h the considered volume; a
I

~U dy
K..

Ie the excees
b

r “a !.

of momentum leaving the front eurface over
1’ 8

momentum entering at the rear;
& r

pudy

#

the amount of

is the Inflow .

“!
—— . ..—
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volume per unit length of the side area Y = 8 (x), 00 that

“!

------ .-==. -
a

‘o x pudy Indicatee the momentum entrained with thie vol-

ume of fluid,

In laminar flow the frictional force R referred to

unit surface 18
()E = ‘o = k * ~ = o ‘T = ‘hearing ‘tree”

In the fluid.) Later on, it Is shown that equation (5) le
practical aleo for turbulent flow condltlone, if u and p
are regarded aa the average valuee of the velocity with
respect to time and TO is expressed by a corresponding
empirical formula.

Eauation (5) can, of course, be derived also by in-
tegration with respect to Y from equation (4) with due
regard to (4a) and (4b). It obvimsly yields, on the baslo
of plausible assumption for the velocity profile u (Y)
In the boundary layer (O < Y c 8), elmply a differential
equation for 6, that is, for the boundary layer thickness
ae a function of x and t. Llmlted to stntlonary proceeees
It affordm an ordinary differential eouatlon of the flret
order for & a8 a function of x, so that the development
of the boundary layer can be followed by comparatively’
simple calculations. The suboeouent report by K. Pohlhausen
(reference 1) contains the calculations for a number of
practically important cases, so that this method need not
be gone into further. His calculations show that in all
caaes computed by Prandtl’s partial differential eauationn
the approximate method ensures reeults commensurate for all
practical purposes. In this manner a further development
of the theory Is made possible even where the solution of
the partial differential equations Is extremely tedious, If
not Impossible.

LAMIMAE AND TURBULENT BOUMDARY LAYER

The eimplest and practically most important case that
the boun~ary layer theory deals with Is the frictional re-
elstance of a plate towed in a fluid at rest parallel to
ite own plane. Taking the case of two-dlmeneional motion
and referring the motion to the assumedly static plate, the
problem Is as follows: The parallel flow with the uniform

.—
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vp-locity- *U i? given as a potential motion, the frictional
boundary is- to start In-the origin of”the coordinates x =
Y = o ~nd for

X>o be given--by the axis y=o. The

boundary layer thickness and the wall friction Is to be
oomputed as a function of x. This problem has already been
solved by Blasius (reference 2); he found that the boundary

layer thlcknebs facreasee with fi . Computing the friction
drag for a plate of leneth 1 and width 1 yielde the fric~
tional force (for friction on both sldee)

(6)

or, If put, as usual,

Uaw= cf~ P — (7)
2g

U*~h?rgtheres~stanceis referred to the velocity head
Zg ‘

the surfece R’ and tbe specific weigr.t of the fluid Y=pg,;

w=
f

u=
1.327 z F’Y — (8)

Ut 2g

The coefficient of the frictional drag
of the Reynolds number, or ‘reduced velocityn

cfR I;nae:f:c:;:n

nondimensional ouantlty: veloclty 8 plate length’~ivlded by
coefficient of kinematic viecosity Is introduced as such, so
that

Cf
= 1.327

k

(8a)

Blasius indicated, in a later report (reference 3) based
upon measurements, that fortias (8) and (8a) are no longer
valid for large Reynolds numbers, that rather a eudden change
occurs in the nature of the resistance and presuniably In the
state of flow, similar to that occurring in nipe flow at the
critical limit. On the other side of the sudden change the
resistance in~reases at mope than the 3/2 power of the velocity;
hence the resi~tance coefficient in equation (7) decreases

slower than —.

T

.-.. . - _-——-
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Next, ” it .~n aosupgd that the lamlnar boundary layer, for ●-., . —-
which the Prandtl-Blasius theory gives the afore-mentioned
reeulte, Is replaoed by a “turbulent boundary layer,n an
whioh - as for the turbulent flow in pipes - the veloclt~ Ss
subjected .to continuous fluctuations in magnitude and direc-
tion. The firet consequence of the fluctuations - when
plotting the streamlines of the average flow - is that the
shearing stress Is not caused by the sliding of the adsacent
fluid portions slope; the portion of the shearing stress
corresponding to the friction becomes small relative to the
momentum traneport owing to the Irregular convection of the
supplementary velocities. up to now, It hae not eucceeded
to explore in some way the nature of thle momentum convection-
apparently obeying statletical lawe - and to make the fluc-
tuation phenomena accompanying the turbulent flow amenable
to a theoretical study. In this respect the present article
contributes nothing to the solutlon of the pu=zle, The task
undertaken here merely involves the introduction of plausible
aeeumptions for the distribution of the average values of the
velocity within the boundary layer, which are based on the
empirical law of turbulent motion In pipes and the applica-
tion of lihe previously derived momentum e~uatlon to the
equilibrium of the boundary layer. It results in relatione
of the turbulent friction at a towed plate which are In very
good agreement with experience,

TEE TURBULENT B’LOH IN Sl!OOTH PIPES

The laws of flow reelstmnce In pipes have been the sub-
ject of an unusually large number of experiment. But the
empirical material has not Improved much up to within recent
date because the different degrees of wall roughness had been
frequently ignored and the teste were not referred to the

?
hyslcally correct parameter, that is, tke Reynolds number.
The only ree~stance formula,ee far, which allows for the

relative roughness and the Reynolde number Is that” by R. von
Miges (reference 4.) In many instances no consideration wae
given to the fact that the conetant velocity profile In the
pipe ie formed only after a fairly long ‘convection path.m
Blneius merits the credit of having found an empirical
formula by analyzing the material and comparing the beet ex-
periments for smooth pipes which very accurately reproduces
the nature of the flow resistance over a wide range. Accord-
ing to It the preesure drop for a circular pipe Ie referred

to the velocity head of the average veloclty ~
2g

—.
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(9)

where t Ie pipe length, and d pipe diameter.

By this formula, which represents the experiments ex-
tremely well over n wide velocity range the preeaure drop ia
proportional to the 7/4 power of the average veloclty as
against the previously held conception that the resistance
law above the critical velocity would approach the square
law fairly soon. R. von Miees incidentally oonjectu~ed that
contemporarily with Increaelng velocity, the ~elocity dis-
tribution over the section becomee consistently more uniform
eo that the measured parabolic velocity profiles merely
form a transitional phenomenon and that the profile varies
continuously with increasing velocity (reference 4.) In
the technical literature a parabolic distribution independ-
ent of the velocity 10 for the most part tncitly aeeumed.
The writer concure with Von Rieee to the extent of aseuming
a distribution varying with the Rewnolde number but with the
difference of aeeumtng a well defined dietrlbution function
ae asymptotic form rather than the uniform distribution,
which the velocity dietrlbution approaches at laree !?eynolde
nur,bere and on perfectly emooth walls. Hence, the assump-
tion that in the tu~bulent as in the laminar zone, St le~st,
for large Reynolds numbere for which the reeietance law (~)
holds true, a similar remaining velocity distribution over
the croee eection exiete, so that for Increasing throughflow
volume all velocitle~ increaae in proportion. Prandtl raieed
the oueetion whether conclusions could be drawn from the em--
~irical law (9) regarding tliie veloc~ty distribution. He
found on the baele of a dlmeneion%l analyele that, under
certain plaueible aeeumptlons, the reeietance law definitely
defines the distribution of the velocity In the direct
vicinity of the wall. The euggeetion for the following anal-
ymim goee back to a convernatlon with Prandtl tn the fall
of 1920. The publication se with hie coneent, though the
proceee of derivation IS eomewhat different from hie.

Coneider a pipe of circular croes eection, If the
veloc~ty in the pzpe axle (F = O) ie indicated by Umax,

the assumption of a velocity pro$ile independent of the
throughflow volume and increasing similarly implies that the

ratio u#-- Ie a definite function of ~ only (r = dietance
max

from pipe axle, a = pipe radiue).
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Hence, the first ae-sunpt,$o-qread?:
tance r from the p$pe axis can be put

()U=%axl+

10 -

the velocity at dis-

(10)

T ~~) being independent of %lSx” On doubling the velocity

in ‘the center all velocities are doubled.

The second assumption states: the velocity distribution
in vicinity of the wall, that 1s, near r = a, Is to depend,
aside from the physioal constants w and p, only on the
distance from the wall q = a - r and further, on the
shearing stress (frictional force ~ 70 transferred to the

wall 1 Hence, for small values of q

Specifically, the quantity u Is to be independent of
the pipe dimensions, that is, of a, for small values of

n. This assumption Is based upon the plausible concept
that the velocity distribution next to the wall is inde-
pendent of the other boundaries of the flow, so that a
definite relation e~lste between the friction on a wall ele-
ment and the Immediately ad~acent velocity distribution.
Visual~ze eguatlon (11) developed by increasing powers of q;
the first term of the development to read

x to be defined later.

The third assumption contains the empir~cal reelstanee
law: on doubling the velocity the pressure drop and the
shearing stress at the wall To Se to be Increased as
1s27/4.

The dimensional equality of the left- and right side
of (ha) can obvtously be maintained only when f contains
the quantlttee M* P“S TO also only In powers; for, on

F
o v

bearing in mind that and - have the dlmeneions of
T n
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velocities, it IEIreadily apparent that the only poss Sble
dimensionally correct combination Is .

()
z + r:’.

u=B~ -7r- ()nx—
P v

(1%?)

where B is a nondimensional constant.

On the other hand, since u Io.creasee according to (10)
In proportion to the throughflow volume; whereas, TO SLC-

cordlng to the reslstanoe law increa~es with the 7/4 power
of the throughflow volume, the relation

I+x
= 4/7, x = 1/7

2
(13)

must apply.

The first term of a development of the veloclty is thus
obt’ained as a function of the wall dietance

“=’(34’7(9”7 (12a)

or, with U(n) denoting the velocity distribution In prox-
imity of the wall, the shearing strese

TO = 1—pu
B4/7 “;yo($)

B Is a universsl constant valid for smooth walls the
magnitude of which is obviously contingent upon the atatietl-
cal law of the turbulent fluctuation euullibrlum.

It is somewhat surprising at first to find the differ-
ential auotient at the wall to be Infinitely great. Since
no momentum convection can occur on a smooth wall because
both velocity components disappear, the shearing force must

au
be eaual to the frictional force This expressionw ~.

should be infinite according to eauatlon (12a). The matter
is explalned, however, by the fact that the eau%tions (l?)
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and (128) must be regarded as an asymptotic expreselon for
,-. .

tlie’-velocity.-dietributriozi at”>inf initely lmrge Reynolds num-

I
I

i:!
I

hers just ae the power law for the flow resistance represents
an asymptotic law for absolutely smooth walls and for very
large Reynolds numbers. The true velocity dietributlon Is
obtained by drawing a tangent with finite slope, say, to

the velocity curve, so that
7 = k % ‘compare’ ‘0’ ‘*

ample, the Inter eetlng measurement in reference 5.) It ie
readily apparent that the pooint of contact of thie tangent
is ehlfted to the point q=o with increasing Reynolde
numb er. But it appeare that equation (12) Iteelf represents
the velocity distribution with sufficient aocuracy for moder-
ate Reynolds numbere.

I/.

The beet experiments on the velocity distribution In a
circular pipe were undoubtedly thoee made by T. E. Stanton
(reference 6), first, because he originated the use of very
fine pitot tubes in velocity measurement, and eecond, he
employed a very long etraight entrance section ahead of the
test section, thus eneuring that the measurement fell In
the zone where the velocity profile no longer varied per-
ceptibly. Figure 2 shows Stantonss velocity values (ratio
of local velocity to pipe axis velocity) against the wall
distance, both on a logarithmic scale. It is seen that –
apart from the first test point, 0.25 millimeter from the
wall, so that the indication of the pltot tube of 0.33 milli-
meter In diameter no longer seems reliable - that the test
points lie very accurately on a straight line of 1/7 slope.1

For the further applications quantity B In (128) and
(12b), which according to the aesumptlons for smooth eur-
faces signifies a universal conetant of the turbulent flow
regimes must be determined next. Por this purpose It is
really neceeeary to know the total velocity distribution from
the wall vicinitv to the center of the pipe, whereas the for-
mulas (128) and {12b) are valid, for the present, only in wall
proximity. The chosen method of calculation Included the use
of several appropriate interpolation formulas which *ntle-
factorlly reproduce the velocity dletrlbutlon, ae measured
by varioum experimenters, and change to eauatlon (1%) at the
wall.

lIt Ie to be noted that Christen proposed a veloclty
distribution formula according to which the velocity is pro- ‘
portlonal to the 1/8 rather than 1/7 power of the d5etance
from the wall (reference 7). A detailed presentation of the
various distribution formulae Is found in Forchheimer’e work
(reference 8) ae well as In -belts report (reference 9).
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(8) An extreme case occurs when the formulas which ln-
dlcate the velocity It-proportional to the 1/7 power of the
dietance from the wall are continued to the pipe center.
Therefore

u “ -FFY’7 =‘max(’-:)’” (13)

or for wall proximity

u=‘(y’ (3’” =‘max$
Considering the relation

dp a n
= 2naToz ‘a and To = y ma

existing between the pressure drop and the wall stresn, the
calculation of the flow resistance by Blas5us’s formula given

The ratio of average veloclty v, occurring In BlnsiuR’a
formula, to maximum velocity 1s, b~ (13),:

v
— = 0.816
‘max

(6)
1/4

Thus with A = 0.316 ~ the value for the conmtant
B is v

B “ ‘I’’(+ )4”0=8” = 8=57

(b) A better approximation to the measurements Is
afforded In the case where the velocity profile at the pipe
center is ‘roun&ed Offm a llttle. This is beet obtained by
the formula

.



—

-- ... .,-, .. u .= wax (1-(yj”- #, (13E)

Where the exponent n can be choeen arbitrarily; n=l
obviously leade back to (1S). Fi@re 3 contains a number
of measurement of different experimenters along with the
three curvee for n = 1, 1.25, and 2. The test points lie
almost without exception between curves ~=1 and n = 2.
Repeating the above calculating proceee with n = 1.25 and
n=2, the conetant B amounte to

.

B = 8.62 with n = 1.25 .

B = 8.82 with n = 2.00

average velocity
The valuee of the ratio — are 0.838

maximum velocity

fOr n = 1.25 and 0.875 for n = 2. The moat reliable
measurement give 0.84.1 l’rom this it Ie concluded that (13)
with n = 1.25 to 2 represents the conditions fairly accu-
rately, tao that hereinafter B = 8.7 is generally u~ed.

Thus eouation (12a) must be written

u= ‘=’(3’7 (:s” ( 14a)

If the shearing streee ‘rO 1s expreseed as function of

the velocity, equation (12b) reade

To =
+ ‘::0{’”(:)”4}

With the values of B obtained on the basle of the
three Interpolation formulae, the eouation would read

lAIso worthy of mention are the measurements by G. J.
Williams (reference 10) and G-rebel (reference 9)? where
the proportionality factor decreaeee a llttle with lncreas–
Ing Reynolds numbers and then approaches the llmiting value
0.811. This would favor the simple Interpolation formula
under (a). But eubstantlally higher values (up to 0.8~) also
occur, where the effect of entrance length and roughnese have
not yet been fully explalned.



.

liACA TM HO, 1092 “ .

n = 0{’’(s”}
T = 0.0225 p llm

15

(14b)

as the general e~rese ion for the wall friction in case the
velocity dlstrtbutlon u (TI) ie known in the vicinity of
the wall. l!he constant tn equation (14b) amounts to 0.0233
for the velocity dlstrlbutlon in the pipe by (14), as againet
0.0231 and 0.022~ w3th q = 1.25 and n = 2, by (14a).

WSL ICAT ION TO HEAT TRANSFER

Eor compar~ng theee formulas with the representations
expreeelng the turbulent friction by an apparent incre=oe
In friction coefficient (reference 11) the shearing etrees
transmitted In a layer distant TI from the wall ie

(15)

If u as a function of TI and the pressure gradient
in the pipe are known, the function g can be explleltly
calculated, Hear the wall T. must become To “

du
Considering (14a) and especially the relation: 7 rI— =

d~
u, yields for g:

To

()

3/7
g (~~ W, p) = 0.805 p

1/7 0/7

7
Y n

and putting TETO; as follows from the conditjon of

equilibrium for the circulsm pipe, givee
.

3/7

g(n, k, p) = 0.805 ~ (:) #7 f/7 ( 15a)

1
Y being eolely a function of q which becomee rI for small

1 m. ~he relation (15a) is applicable to any cross eectlon if1!
it Ie aesumed that the ratio of shearing streseem ~. IsI

independent of the velocity and Is only a functson of the
location.

!
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quantity g is a kind of “turbulent friction coeffi-
cient” or better expreesed n ‘turbulence factor.”

The portion of true friction at larger Reynolds numbers,
up to an extremely thin layer at the wall, is vaniehlngly
small, hence the shearing strese is to be regarded almost
exclusively as an average value of the momentum convection,
This identiflca%lon is of Intereet because It makes It
possible to develop further the analogy between frictional
resistance and heat transfer In turbulent flow, dlncovered
by Eeynolds (reference 12) and Prandtl (reference 13).
Aeeuming that the momentum transport and the heat transfer
is accomplished by the same mechanism of the Irregular molar
fluctuating motion, evidently resulte in two analogous formu-
las for the shear$ng force transmitted perpendicular to the
flow by ‘turbulent momentum conduction” per unit of surface

‘ and for the heat volume transferred by “turbulent heat con-
duction:fl

( 158)

()‘o
3/7

1/7 6/7 d(cea)
a = 0.805 — v Y—

D dy

where c = speclf:c heat, e = temperature, hence CO = heat
content per unit maOs. Formula (15a) may be continued up to
the wall with good approximation Sf the same proportionality,
assumed for the mechanism of the “turbulent momentum and he%t
tranafer,H exists for the tranafer of molecular momentum and
heat , that 10, for the lamlnar 5nternal friction and for the
true heat conduction. Ae previously pointed out by Prandtl,
thie is evidenced by the fact that for the respective fluid,

the relation

1

*=3 exists between heat conduction k,
A

friction coefficient W, and specific heat c. Thts oonditlon 18

9 dlffere veryapproximately complledwith, in gasee. If ~

I much from unity, as, for example, for water, the formula may
be extended only to the boundary of the lamlnar layer next[

1 to the wall; while the effect of thle layer = ae will be
explained elsewhere - can be expreaeed by a limitlng con-
dition.
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.-. The forntllan f-15a) enables the heat transfer to be com-
puted in all cataea, where the “veloo~ty f~eld” of the turbu-
lent flow 1s applicable to the average valuee Sn t~me, and
hence g is known. With thih formula, H, Latsko (reference
14) worked out a number of technically important ca~es of
heat transfem to turbulent flowe. It succeeded, in particu-
lar, In showing, that it So tncorrect to speak of a “heat
tranefer faotor,a ae 3s cuetomary in engineering, that the
heat tranefer iiirather conditional upon the total arrange-
ment. It alao rnucceeded Sn explaining the effect of the
indlvidu~l factors and 00 to organise the ooaamiori~lly con-
tradictory experlmantal me4terial. In thla respect the calcu-
lating poesibilltlee of heat tranefer processes appear sub-
etantlally extended bepond the Prandtl anqlogy oonclu~iong,
6ince for the latter n oomplete arraement In velocity tmd
temperature field had to be assumed,
present report makes the differences
ble to calculation.

TURBULENT BOUNDARY LAYER OH

The eubseouent calculation are

while th~ formula of the
between both also amena-

THE 3’L4T PLATE

based on the previously
derived eouatlons (14a) and (14b) ~ccordlnp to whi~h the “
velocity dietrlbution ae a function of the wall dietance iB

U=8.7(:7’ (:)’” ( 14a)

~f To, the shearing atreee transferred to the wall la
given, while the shearing stress To is

()

1/4

To = 0.0226 f# : (lAb)

u(q) being the velocity dletribution in the neighborhood
of the wall. TO apply these relations to the ‘turbulent
boundary layern requires a corresponding formula for the .
velocity distribution. With 8 = boundary layer thicknese,
u= velocity in undisturbed flow, and Y = distance from the
wall, the elementary formula reads

~ 1/7

()
Ussu-.

8
(16)
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Equating.., to (Ma) ,.0hvioun17 @v,e.Y ..-

that is, the ohearing stress

()v
1 /4

To = fl.0225 p@
m

(17)

Equation (17) y~elde the formula that must be used In
the momentum equation of the boundary layer as the frictional
force in order to obtain a theory of the turbulent boundary
layer whleh i6 to replace the Prandtl-Blataiuu theory for
the laminar boundary layer.

Placing, In fact, equation (17) in equation (5) gives

6 &
d

J [

1/4
Puady - U :

z’ ()
pudy = 0.0225 pua ~ “

.
0 0

Determination of the integrale

p“ and }2” by

meane of (16) glvee the differential euuatlon of the boundary
layer thicknes~

.
The eolutlon of this equation reade

,- Y? 4’5(0.022,)4’’(9”5
() 7 u

or, for the length 1

4 /s
x (18)

(l@a) “
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The laminar boundary layer grows proportional to G*.. .. . ,.
the turbulent iayer prop brtioial to

#/5
# ●ccording to eoun-

tion (18).

Now the frictional resistance of a plate of length I .
cam be calculated, either by integration of the frictional
forces along the plato ~ by applying the momentum theorem
to the end section for *=1. The reeietance (both etdee)
follows ae

(19)

Referring the reaiatando through the formula

to the velocity head, gives the resistance coefficient cf

Cf
= 0.072 ~ o.a

R

the Reynolds number R
U2 1

bein~ put at R = —.
v

( 19a)

~gluw 4 contatne the test data by ~ibbons and Wleaelaberger
(reference 15) on com aratlvely smooth plates, the line for
Cf Taccording to (19a , the Reynolde number and the reaiat-

ance coefficient are given on a logarithmic scale. The agree-
ment ia exceptionally-good. Gebera (reference 16) obtained
a slightly higher exponent. It la auapected that towin~ of=
very long platea ie accompanied by inevitable vibratlona
which permit the realatance to increaae rapidly.——

‘According to a communication by letter, Prandtl pos-
aesaed formula (19a) before the writer did.
(cf. Ergebniaae, vol.

He indlcatea
1) a elmilar formula with a aupple-

mentarv term which allowa for the poaalble existence of
lamlnar flow a$ the front edge of a suitably eharp plate.
After determination of the numerieal factora from 0~~:: teats

by Oebera, 1he gives the formula cf = 0,07~ — - —Ro.a R’
where the numerical factor In the e~cond term generally de-
pends upon the degree of aharpenlng, and should be practically
vanlahingly small for a rounded-off leading edge.



HACA TM HO. 109? . 20

.

An equnlly good confirmation is afforded by the veloclt~
measurements In the vlcinlty of a toved board. Thus the
points in figure 5 represent the measured velocity distri-
bution perpendicular tc a board towed in water as a function
of the wall dlsta~ce and specifically in a section 8.!56meters
behind the front edge (r@ference17). The eolid line gives
the velocity distribution according to equation (15), the
boundary layer thickness was computed by equation (18).
A comparlaon of the test data with the curve aocording to
equation (16) dtscloses, above all, that It Is In no way
necessary.to assume a velocity jump at the wall, as ccm-
monly reported in the technical llterature~ The prssent
formulas rather repr~aent the rapid decrease !n velocity
next to the wall by the variation of the power curve with
the exponent 1/7 correctly and unrestrictedly.

LA1411!?AS~LO}l 011 A ROTATING DISX

As a further illustrative example of applying tho ❑eth-
ods obtained for the calculation of laminar and turbulent
frictlonml resistances, the case of a uniformly rotating
disk 18 to be analy~ed. The laminar state of flow caused
by a rctatlng flat disk Is of special interest for the rea-
son that it represents one of the rare crises in which the
differential equatinns of the viscous fluids can be inte-
grated without omrcissions. It offers an immediate check
on the accuracy with which Prandtl’s boundary layer eaua-
tions yield an approximation.

The problem is posed as follows:

The half space X>o shall be filled with llouid.
The boundary plane XEO rotates about the x-a~is .wlth
the uniform rotational speed w. ?i’hQt tS the StRtCl of
motion in the half space X>o with consideration to the
fluid friction?

Introducing cyltndricnl coordinates +,-d, x end de-
neting with cr~ ct~ cx the velocity components In radial,

tangential and axial direction, and with p the hydro-
static preseure, the differential equation of the flow in
cylindrical coordlnatee - when, as. f~llows from reasons of
symmetry, all velocities are Independent of 6 - read:

\
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2CX acx 1 ap (a’cx I acx aacx~
c —+CX —= --

r ar
—+u~~+rar ‘TJ-—

ax p ax J

and the equation of continuity

acr Cr acx
—+—+— =0 (70a)
br r 5X

The construction of the eouations shows that the sys-
tem (20) and (20a) can be satiefled by the formula

Cr= rf(x), ct = rg(x), Cx= h(x), p = p(x) (21)

thus yielding for the three functions f, g, h the or–
dinary simultaneous differential equ~tlons

d~f

f&-g=+h~=v—
dg dzg dh

2fg+h—=v— —+2f. o (22)

dti dxa ‘ dx dxa ’ dx

while the equation

h dh l~+wfi— =-- (23)
● dx p dx dxa

arising from the third eauatlon of the system (20) defines
the pressure dletribution p(x) .

51nce the fluid Is to poaee~s no rotation at Infinity,
but Is to adhere to the rot~.i~~g wall for x = 0, the eye-
tem of the boundary conditions reads “ ““

f(o) = o f(m) = o
g(o) = w g(m) = o
h(0) = O

———. —
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The function h(x) has m finite limiting value for
Xsm, This means that there ie a steady inflow against---- .
the rot~ting w~ll as 1s to be expected for reasons of
continuity. Owing to the adherence of the fluid, the ro-
tating wall acts l~ke a kind of centrifugal fan. Hext to
the wall the fluid is continuously car~ied to the outside,
to be replaoed by axial inflow.

For nondimensional repregentatlon

!! r W
=x-

V

Is introduced aa independent variable nnd In place of
f, g, h tke functions :’ s’ 9

f
f h= ‘h=—-t*=-l_
w (u e

(24)

(24a)

so that (22) becomes

with the boundary conditlona

so that the equations are independent of all special data
of the problem. The similarity laws of the problem are
readily apparent. Since g(~) Indicates the proportlon–

ality factor of the rotative speed at distance x = t~

from the wall to speed of rotation w, It ie clear that
with increasing velocity only one layer at the wall mani-.-
feita perceptible rotational epeeds, which decrease with

Increafaing ve~oclty and deereaqing viscoeity as F ‘3“
On the other hand, It follows from the last of equation
(24a) that the axtal l~flow velocit~ Increases a$ $~flnlty

as e.
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The equation system (22) can be eolved by any numeri-
cal method or by eer lee expane%on. However, it Is pre-
ferred to apply F@hlhausents method described Sn reference
1, far a first approximation.

It is assumed that the function Z and g at a
dletance 8 from the wall are already very little differ-
ent from zero. From (21) it follows that the ‘boundary .
layer thlckneesn In the present caee is constant along
the wall, henee 6 Is Independent of !=

Integration of the first two eauation”e of (2?a) be-

tween k = ~ and X=8, that la, C = fl~~= *o, elvee

1(25)

i
I

J

Part~al l~te?rztlon of the eecond integral, while
be%ring In mln~hthat according to the last eouatlon of the

system (2?a) ~- cun be replaced by - 2f, finally affords

Put

ae approximate exprees ione for f and ~w where a si#!-
nifies a con~tant that 5s to be ~etermlned.

It wae borne in msnd thatP
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and also, as is readily seen from (22a), that

liumerical calculation of the integrals contained Sn
(26) gives

CC

r gatlg = go [0.0301aa - 0.00326a + 0.00159]

~~

J

gad~ = ~0 0.2357
\ (28)

.

co

r

fgd~ = go [0.0607a - 0.00567]— J.
0

which, entered in (26), gives two ordinary equations for
s and to

The numerical solution g$ves

a = 1.026, to = 2.50 (70)

On the baaie of these data the boundary layer thick-
nese 8 and the axial inflow velocity Ca at Infinity
can then be computed. Obviously
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to

8 = to &=
f

2.58 :, - Cm = ~

-f

~~d~ = 0.708~
. . .._—. .—-. - 0

25

(31)

Assume , for example, air ao fluid with v = 0.14 equare

centimeter per eeeond and an rpm = 600 per minute, thmt 10,

..= = 62.8 per second; then the boundary layer thioknees,
60

according to (31), would be

8 = 0.122 cubio centimeter

and the axial inflow velocity

cm=- 7.6 centlmetem per eeaond

The mast important problem is the calculation of the
frictional reeletence. A@ewing the wall bounded by r = a,
the oaee IEI obviously that of a rotating diOk with r~dlus a.
However, the faot thet the outer partO of the plane X=o
are missing, cannot be without some effect on the motion of
the fluid, although it in to be preeumed that this effect
remains insignificant, when bhe thickness of the boundary layer
relative to disk radius is very mall, av is almost c.lway~thecaseb pmctlce.
On these aseumptlorie, the moment of the shenrlng forcee act-
ing on the disk Ie simply integrated from r = O to r = a,
or what amounts to the same thing, the angular momentum leav-
ing in unit time with the flu$d at the cylindrical eurfaoe
r =a Is computed and equated to the moment of the frictional
forceO. The latter process ie preferred. The angular momen-
tum of the fluid leaving Et the cylindrical eurface in
time ie

6

D = 2waap rcxcrdx = M

#

or, by (21), (24), and (24a)

M = 2wa4pw sla

Ec

The integral

r

~d~ has

0“
ing Its value from (28) gives

to
Vlla

f
Qd E

o“

already been computed.

unit

(32)
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H = 0.9% L4pVz’a LU3’a

where U = EUI is the elroumferent ial velocity and n=?

iFIthe Reynolds number. Equation (33) must, of oourse, be
used twice, to obtain the reaietanoe of the disk exposed to
flow from both eides .

FE IC!CIOliAL R3S 19TAHCE OF ROTAT IHG S)ISK IN TURBULENT FLUID KOTXO19

The relation governing (33): a frictional moment propor-
tional to the 3/Z power of the rotational epeed at higher rota–
tional velocities is not borne out 1P praotiee, On the con–
trary, a taubstantlally quloker increase In #’fictional moment
la recorded with the rotational velocity. So the assumption
im made again as for the towed flat plate that a turbulent
boundery layer ie Involved, and an attempt 18 made to secure
an approximate value for the boundary layer thickness and the
frictional resistance by applying the momentum equation.

5’or the rotating disk two equilibrium condltlone are re-
quired, one In the radial, the other in the tangential direc-
tion.

Employing the came not~tion ne In the preceding section
and adding ?r and Tt (fig. 6) for the frictional foroes

per unit surface at the wall, the momentum ouantltiee In the
redial direction are:

(a) E*cess of outgoing momentum auantity at the cvlin–
drlcal surface (r + dr)8 (for an arc element of openlne
angle 1] over to the incoming momentum quantlt~ at area r~

& {r~c~dx~dr- .
0

(b) The radial compupent of a respect Ively Ingoing and
outgoing momentum quantity at the front surface (e ual to
the centrifugal foroe of the rotat$ng fluid volume J
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. ,, ~ -(fj’’%’d’)‘r ~ -
0

These momentum auantlties must be In equilibrium with
the shearing foroe Trrdr; hence

p &{ra/c,adx}-P/ctad. = - .rr

o

(34)

In tangential direction the difference of the turning
moment of the momentum leaving at the cylindrical surface
2w(r + dr)8 and entering at the surface 2nrd can be ccm-
puted and equated to the turning moment of the frictional
forces acting on the circular surface.

an&{raf.rctdx}= -Tt%rra (35)

o

The formulan for the velocity distribution are- according
to the results of the section Turbulent Elow in Smooth Plpee.

‘r “J’N(l-3’ Ct = ‘w [1-(:)1”] (36)

with due consideration that

for x=()
Cr = O, Ct = rw; for .=&

Cr =Ct=o

lVoW the integrals in (34) and (35) can be evaluated:

8 8 6

‘a

/ [f

Cr d. s 0.207Coa6 , crotdx = o.06tnZWCoa,
f

ctadx = 0.027t5raUJa8

i ; o“ (37)

— — —. — -—- —.
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Further, put. in conformity with the aesumptlons on the,,.
mea”tiure of tirbuleht friction eauation (14 b).

‘t
= 0.0225 p(ra))“4 -[1+ (:)”]””

by combining the velocity components at the wall and applying
the friction formula to the reeultantP

With this equatlone (34) and (35) give the two differentl~l
equatlona

d
-[ 1“0.0661r3wco/3; s 0.0225r’wa
dr L

(~’” [1+ (;}]’”
..

The equationa are satiefied If the relationship between
boundary layer thicknese and axial distance r is put ae

(38)

and which gives two ord~nmry equations for a and B analo- “
gous to the equation system (29).

The equations

0.7456 aa~ - ().0278 ~ = - 0.0225 aa
~ (*)’”(, + _ly’”

0.3133 C@ = 0.0225 (;y” (I+m.,”’e (39)

-. — —. . . .

I

— —-——_ -.. —-
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given after division
4 ...’----.- .

. . . . ---
1.0589 aa - 0.0278 = O

The numerical oolution gives

1/6

a = 0.162
()and hence B = 0.462 ~ (40)
al

With these figures the boundary layer th$oknese becomes

v

()
l/15

6 = 0.462 r —
ram

The section modulue can be computed by the method given
in the preoedlng chapter or else based on equation (35);

b

/

1/6
M = 2maap

v
orctdx

()
= 0.0364 a=map — (41)

aaw
6

and the friction for both sideO of the disk

v

()
1/5

M = 0.0728 aOuap —
a%

(41a)

In accord with the calculations on the towing reelgsance
of plates all friotlonal resistances are then referred to the
velocity equare and velooity head, respectively. With U =
circumferential speed of the disk, the moment Ie

Ua
()

X/B

M=Oo146Y—a3 ~

2g
.

or the reeietance ooefftclent 82 ae a funotlon of the

Reynolde number of the dlek R = ~

1

‘f = 0.146 —

‘m

(42)

(43)
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l’igure 7 shows of plotted against the Reynolde numbers

R- .both.on”a-”lo’garlthmlc scale. The plot also contains the
resistance coefficient

(44)

secuxed from the calculation of the laminar boundary layer
by equation (33a).

The experimental data we~e taken from a recently pub-
lished report on frictional reeietance of smooth disks in water
by W. Schmidt (reference 18). The agreement Ita good. Of par-
ticular Interest IS the fact that the measurements at smaller
Reynolde numbere fall exactly in the transitional zone be-
tween laminar to turbulent flow.1

NOTES OH ROUGHHESS

Whtle for perfectly smooth pipee the Blaelus resistance
law Is apparently applicable over a wide range of velocities,
so that It seeme more than an interpolation formula, pipes
with rough sides soon exhibit after exceeding the critical
point an approximately square relationship between gradient
and velocity. l?or thie state the pressure gradient may be
put at

(45)

‘The experiments by Odell (Engiaeer$ng, Vol. 77, 1904,
p. 33 and b

T
A. Stodola (steam turbines, 4th W., Berlin 1910,

PP ~ 120-129 on the friction of rotating disks in air give 20
to 30 percent higher values and a more raptd increase In frlo-

tlon with the circumferential velocity.
S+c

Odell shows -m

with c a small positive digit, Stodola ~l.e inetead of
~l.e ). Odelltta tests are certainly doubtful, becauee the
paper disks which he used, flutter emd thus eimulate greater
frictional resistance. 14 Stodolase report the higher ex-
ponent appears to correspond to the roughness of the disk.

—.- ..-. . —- —
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A is a function of the relative roughneae
c
~;..c denotee a

...,-._. .-
quantlty with the dimension of a length, which, to a certain
extent measures the average increase In the wall roughness.
The ratio of this quantlt

[
to the pipe diameter ie termed

the ‘relative roughnesmw reference 4)=

The square law for rough wane is plausible for the
reaeon that the frictional resistance is visualized as being
built up from the individual reslstmoes of the wall pro-
tuberanoee , whioh eingly obey the equare law. The mechanism
of frictional reaietance la in these c!aees obviously caurned
by uniform aheddlng of vorticee of well-defined Intenelty
and dimeneione, aO la the aaee for flowe on realstanae bodice.

The flow reeietance in perfectly smooth pipee might be
visualized such that in this instance vortices of dleelmilar
magnitude are eeparated and float at random in the turbulent
flow, the frequency of the vortlcee of different Intensity
and size being controlled by some unknown, statistical law.

By this ooncept the frictional reslatance in smooth
pipes oan be regarded as a fictitious combination of resist-
ances that correspond to the Individual kinds of vortices.
Aesumlng that a relationship exists between sige of vortices
and roughnese, It may be said that the frictional resistance
in smooth pipes can be obtained by euperpositlon of the in-
dividual reeistancee obtaerved on rough pipes and Increasing
with the square of the velocity, if the individual equared
resistances are entered with correct weights in the ealoula-
tion.

It is not without interest that conclusions can be drawn

()Eabout the form of the function k
z

on tho basis of this

conception, and specifically, without knowing the law of
freouency and”the weight funation of the individual reelst-
ances .

In particular, it can be ehown that, If the Blasius law

()
for smooth plpee holds true, the function A ~ must have

the formula A.
()

E al?

i
at least for emall values of ~,

A. denoting a constant.

—-—-
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On superposing the squared resistances by (46) on nseump-
tloxr-df-a we-l~ht-function g(c), the resistance law for emooth
Pipee reade3:- .

h= (46)

Next, it Ie aeeumed that the function ~(q) for emall
values of 6 compared to pipe diameter 18 dependent only on
the physical conetants and the veloclty dtetributlon in the
immediate proximity of the wall elements. Specifically,
9(C ) Is to be independent of’the pipe diameter. On the other
hand, the velocity distribution directly adjacent to the wall
is according to earner assumptlone entirely contingent upon
the shearing etrese at the particular wall element, There-
fore, put

V(E) =9(C, ~, PST*)

From the four quantities only one dimensionless com-
bination can be formed: namely,

To l/a ~
a ()=—

P 5 (47)

Hence, write:

ha

——-..

‘The extent of the Integration to ~ is m’erely a matter
of form , ?( c ) decreaeee very substantially with increasing
c, and from a certain value of c on eauals zero.
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which, with z Introduced as variable gives
m

.,.

J() ,“

. ..--” -.
~

Iv aA ~ q(s)d=
h=.——

d B$ m

J

?( m)ds

m

f

d z)dz

.
0

cm

.n

is a pure number.

Considering the relation

dam Yhd
Yh — = drtTo1 or To=—

4 41

existing between h and To there Is obtained
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which, E-OIVe.@f,or. h . leaves.....

B 8m
K—

()

lva —
hu B+m

()
la+m

z z= (IV
(49)

Thin law corresponds exactly to the Bias ius resistance
law for smooth plpee provided

am
= 1/4

2+m

or

m E 2/71

By introducing a specific formula for the weight function cp - eayr
after the type of the law of error - the relationship between
the conmtants of Blaslus’ law for smooth pipes and the con-
Btants of the law of roughness can be aecertalned. The writer
hopes” to be able to meturn to the further development of
these argumente.

()

a17
If , on the other hand, the law A=AO: la in-

s/7
troduced In (45) the result with Aoe =~la

a v“h=~——
d
9/7

2g

or .

Accord~ng to the
veloclty in a channel
P would be

~fi

analo~ between pipee and channels the
with gradient J and hydraulic radius

c~netnn$ Jo’s p0”e4

aF!r. Prandtl etates that he hae arrived fit the came
result by-’an entirely different process,

.— — .—.—.-.— .—- -.. —-
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Incidentally, according to R. Manning, the empirical

- ‘formula ~ ~--c”~-netan~“Jo. 6”Po”.86, aocording to ~orchheimer,

the formula T a aonstant Jo-s Po07, and accordin~ to

Hermanek, the formula v = ~onatant JO-5 P“”e givee et good
representation of the test data $n rough channels (reference
a, p. 70).

Translation by J. Vanier,
Eational Advisory Committee
for Aeronautics.
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